
Chapter 1

Fundamentals

1.1 Models of Computation

Real RAM Model. A memory 
ell stores a real number. Any single arithmeti
 operationor 
omparison 
an be 
omputed in 
onstant time. In addition, sometimes also roots,logarithms, other analyti
 fun
tions, indire
t addressing (integral), or 
oor and 
eilingare used.This is a quite powerful (and somewhat unrealisti
) model of 
omputation, as a singlereal number in prin
iple 
an en
ode an arbitrary amount of information. Therefore wehave to ensure that we do not abuse the power of this model.
Algebraic Computation Trees (Ben-Or [1]). A 
omputation is regarded as a binary tree.

≤ 0

a − b

b − ca − c

≤ 0 ≤ 0

a c b c

� The leaves 
ontain the (possible) results of the 
ompu-tation.� Every node v with one 
hild has an operation of theform +,−, �, /,p, . . . asso
iated to it. The operands ofthis operation are 
onstant input values, or among thean
estors of v in the tree.� Every node v with two 
hildren has asso
iated to it abran
hing of the form > 0, � 0, or = 0. The bran
his with respe
t to the result of v's parent node. If theexpression yields true, the 
omputation 
ontinues withthe left 
hild of v; otherwise, it 
ontinues with the right
hild of v.If every bran
h is based on a linear fun
tion in the input values, we fa
e a linear
omputation tree. Analogously one 
an de�ne, say, quadrati
 
omputation trees. Theterm de
ision tree is used if all of the results are either true or false.
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Chapter 1. Fundamentals CG 2012The 
omplexity of a 
omputation or de
ision tree is the maximum number of verti
esalong any root-to-leaf path. It is well known that Ω(n logn) 
omparisons are requiredto sort n numbers. But also for some problems that appear easier than sorting at �rstglan
e, the same lower bound holds. Consider, for instan
e, the following problem.Element Uniqueness
Input: {x1, . . . , xn} � R, n 2 N.
Output: Is xi = xj, for some i, j 2 {1, . . . , n} with i 6= j?Ben-Or [1℄ has shown that any algebrai
 de
ision tree to solve Element Uniquenessfor n elements has 
omplexity Ω(n logn).
1.2 Basic Geometric ObjectsWe will mostly be 
on
erned with the d-dimensional Eu
lidean spa
e Rd, for small d 2 N;typi
ally, d = 2 or d = 3. The basi
 obje
ts of interest in Rd are the following.
Points. A point p, typi
ally des
ribed by its d Cartesian
oordinates p = (x1, . . . , xd). p = (−4, 0)

q = (2,−2)

r = (7, 1)

Directions. A ve
tor v 2 Sd−1 (the (d − 1)-dimensionalunit sphere), typi
ally des
ribed by its d Cartesian 
oor-dinates v = (x1, . . . , xd), with ||v|| =
q∑d

i=1 xi
2 = 1.

Lines. A line is a one-dimensional aÆne subspa
e. It 
anbe des
ribed by two distin
t points p and q as the set ofall points r that satisfy r = p+ λ(q− p), for some λ 2 R. p

qWhile any pair of distin
t points de�nes a unique line, a line in R2 
ontains in�nitelymany points and so it may happen that a 
olle
tion of three or more points lie on a line.Su
h a 
olle
tion of points is termed 
ollinear 1.
Rays. If we remove a single point from a line and takethe 
losure of one of the 
onne
ted 
omponents, then weobtain a ray. It 
an be des
ribed by two distin
t points pand q as the set of all points r that satisfy r = p+λ(q−p),for some λ � 0. The orientation of a ray is the dire
tion
(q− p)/kq− pk. p

q1Not 
olinear, whi
h refers to a notion in the theory of 
oalgebras.
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CG 2012 1.2. Basi
 Geometri
 Obje
ts
Line segment. A line segment is the interse
tion of two
ollinear rays of opposite orientation. It 
an be des
ribedby two points p and q as the set of all points r that satisfy
r = p + λ(q − p), for some λ 2 [0, 1]. We will denotethe line segment through p and q by pq. Dependingon the 
ontext we may allow or disallow degenerate linesegments 
onsisting of a single point only (p = q in theabove equation). p

q

Hyperplanes. A hyperplaneH is a (d−1)-dimensional aÆne subspa
e. It 
an be des
ribedalgebrai
ally by d+ 1 
oeÆ
ients λ1, . . . , λd+1 2 R, where k(λ1, . . . , λd+1)k = 1, as the setof all points (x1, . . . , xd) that satisfy the linear equation H :
∑d

i=1 λixi = λd+1.If the above equation is 
onverted into an inequality, we obtain the algebrai
 des
rip-tion of a halfspa
e (in R2: halfplane).
Spheres. A sphere is the set of all points that are equidistant to a �xed point. It 
an bedes
ribed by a point c (
enter) and a number ρ 2 R (radius) as the set of all points pthat satisfy ||p − c|| � ρ.
References[1℄ Mi
hael Ben-Or, Lower bounds for algebrai
 
omputation trees. In Pro
.15th Annu. ACM Sympos. Theory Comput., pp. 80{86, 1983, URL

http://dx.doi.org/10.1145/800061.808735.
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Chapter 2

PolygonsAlthough we 
an think of a line ℓ � R2 as an in�nite point set that 
onsists of all pointsin R2 that are on ℓ, there still exists a �nite des
ription for ℓ. Su
h a des
ription is,for instan
e, provided by the three 
oeÆ
ients a, b, c 2 R of an equation of the form
ax + by = c, with (a, b) 6= (0, 0). A
tually this holds true for all of the fundamentalgeometri
 obje
ts that were mentioned in the previous se
tion: Ea
h of them has 
onstantdes
ription 
omplexity (or, informally, just size), that is, it 
an be des
ribed by a
onstant1 number of parameters.In this 
ourse we will typi
ally deal with obje
ts that are not of 
onstant size. Oftenthese are formed by merely aggregating 
onstant-size obje
ts, for instan
e, points toform a �nite set of points. But sometimes we also demand additional stru
ture thatgoes beyond aggregation only. Probably the most fundamental geometri
 obje
ts of thistype are what we 
all polygons. You probably learned this term in s
hool, but whatis a polygon pre
isely? Consider the examples shown in Figure 2.1. Are all of thesepolygons? If not, where would you draw the line?

(a) (b) (c) (d) (e) (f)

Figure 2.1: What is a polygon?
2.1 Classes of PolygonsObviously, there is not the right answer to su
h a question and 
ertainly there aredi�erent types of polygons. Often the term polygon is used somewhat sloppily in pla
e1Unless spe
i�ed di�erently, we will always assume that the dimension is (a small) 
onstant. In ahigh-dimensional spa
e Rd, one has to a

ount for a des
ription 
omplexity of Θ(d).
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CG 2012 2.1. Classes of Polygonsof what we 
all a simple polygon, de�ned below.
Definition 2.1 A simple polygon is a 
ompa
t region P � R2 that is bounded by a simple
losed 
urve γ : [0, 1] → R2 that 
onsists of a �nite number of line segments. A
curve is a 
ontinuous map γ : [0, 1] → R2. A 
urve γ is closed, if γ(0) = γ(1) and itis simple if it is inje
tive on [0, 1), that is, the 
urve does not interse
t itself.Out of the examples shown above only Polygon 2.1a is simple. For ea
h of the remainingpolygons it is impossible to 
ombine the bounding segments into a simple 
losed 
urve.The term 
ompa
t for subsets of Rd means bounded and 
losed. A subset of P � Rdis bounded, if it is 
ontained in the ball of radius r around the origin, for some �nite
r > 0. Being 
losed means that the boundary is 
onsidered to be part of the polygon.In order to formally de�ne these terms, let us brie
y review a few basi
 notions fromtopology.The standard topology of Rd is de�ned in terms of the Eu
lidean metri
. A point
p 2 Rd is interior to a set P � Rd, if there exists an ε-ball Bε(p) = {x 2 Rd : ||x−p|| < ε}around p, for some ε > 0, that is 
ompletely 
ontained in P. A set is open, if all of itspoints are interior; and it is 
losed, if its 
omplement is open.
Exercise 2.2 Determine for ea
h of the following sets whether they are open or 
losedin R2. a) B1(0) b) {(1, 0)} 
) R2 d) R2\Z2 e) R2\Q2 f) {(x, y) : x 2 R, y � 0}

Exercise 2.3 Show that the union of 
ountably many open sets in Rd is open. Showthat the union of a �nite number of 
losed sets in Rd is 
losed. (These are two ofthe axioms that de�ne a topology. So the statements are needed to assert that themetri
 topology is a topology, indeed.) What follows for interse
tions of open and
losed sets? Finally, show that the union of 
ountably many 
losed sets in Rd isnot ne
essarily 
losed.The boundary ∂P of a set P � Rd 
onsists of all points that are neither interior to Pnor to its 
omplement Rd \ P. By de�nition, for every p 2 ∂P every ball Bε(p) 
ontainsboth points from P and from Rd \P. Sometimes one wants to 
onsider a set P � Rd openalthough it is not. In that 
ase one 
an resort to the interior PÆ of P that is formed bythe subset of points interior to P. Similarly, the 
losure P of P is de�ned by P = P [ ∂P.Lower-dimensional obje
ts, su
h as line segments in R2 or triangles in R3, do notpossess any interior point (be
ause the ε-balls needed around any su
h point are full-dimensional). Whenever we want to talk about the interior of a lower-dimensional obje
t,we use the quali�er relative and 
onsider it relative to the smallest aÆne subspa
e that
ontains the obje
t.For instan
e, the smallest aÆne subspa
e that 
ontains a line segment is a line andso the relative interior of a line segment in R2 
onsists of all points ex
ept the endpoints,just like for an interval in R1. Similarly, for a triangle in R3 the smallest aÆne subspa
ethat 
ontains it is a plane. Hen
e its relative interior is just the interior of the triangle,
onsidered as a two-dimensional obje
t.
5



Chapter 2. Polygons CG 2012
Exercise 2.4 Show that for any P � Rd the interior PÆ is open. (Why is there some-thing to show to begin with?) Show that for any P � Rd the 
losure P is 
losed.When des
ribing a simple polygon P it is suÆ
ient to des
ribe only its boundary
∂P. As ∂P by de�nition is a simple 
losed 
urve γ that 
onsists of �nitely many linesegments, we 
an eÆ
iently des
ribe it as a sequen
e p1, . . . , pn of points, su
h that γ isformed by the line segments p1p2, p2p3, . . . , pn−1pn, pnp1. These points are referred to asthe verti
es of the polygon, and the segments 
onne
ting them are referred as the edgesof the polygon.Knowing the boundary, it is easy to tell apart the (bounded) interior from the (un-bounded) exterior. This is asserted even for mu
h more general 
urves by the well-knownJordan-Curve Theorem.
Theorem 2.5 (Jordan 1887) Any simple 
losed 
urve γ : [0, 1] → R2 divides the planeinto exa
tly two 
onne
ted 
omponents whose 
ommon boundary is formed by γ.In full generality, the proof of the de
eptively obvious 
laim is surprisingly diÆ
ult. Wewill not prove it here, the interested reader 
an �nd a proof, for instan
e, in the bookof Mohar and Thomassen [10℄. There exist di�erent generalizations of the theorem andthere also has been some debate about to whi
h degree the original proof of Jordan isa
tually 
orre
t. For simple polygons the situation is easier, though. The essential idea
an be worked out algorithmi
ally, whi
h we leave as an exer
ise.
Exercise 2.6 Des
ribe an algorithm to de
ide whether a point lies inside or outsideof a simple polygon. More pre
isely, given a simple polygon P � R2 as a list of itsverti
es (v1, v2, . . . , vn) in 
ounter
lo
kwise order and a query point q 2 R2, de
idewhether q is inside P, on the boundary of P, or outside. The runtime of youralgorithm should be O(n).There are good reasons to ask for the boundary of a polygon to form a simple 
urve:For instan
e, in the example depi
ted in Figure 2.1b there are several regions for whi
h itis 
ompletely un
lear whether they should belong to the interior or to the exterior of thepolygon. A similar problem arises for the interior regions in Figure 2.1f. But there aremore general 
lasses of polygons that some of the remaining examples fall into. We willdis
uss two su
h 
lasses here. The �rst 
omprises polygons like the one from Figure 2.1d.
Definition 2.7 A region P � R2 is a simple polygon with holes if it 
an be des
ribed as
P = F \

S
H2HHÆ, where H is a �nite 
olle
tion of pairwise disjoint simple polygons(
alled holes) and F is a simple polygon for whi
h FÆ � SH2HH.The way this de�nition heavily depends on the notion of simple polygons makes itstraightforward to derive a similar tri
hotomy as the Jordan Curve Theorem providesfor simple polygons, that is, every point in the plane is either inside, or on the boundary,or outside of P (exa
tly one of these three).
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CG 2012 2.1. Classes of PolygonsThe se
ond 
lass des
ribes polygons that are \almost-simple" in the sense that theyare arbitrarily 
lose to a simple polygon. In many algorithmi
 s
enarios su
h polygons
an be treated very similarly to simple polygons.
Definition 2.8 A weakly simple polygon is a bounded region P � R2 su
h that1. P is 
onne
ted and P is simply-
onne
ted;2. ∂P 
onsists of a �nite number of line segments, no two of whi
h interse
tex
ept at a 
ommon endpoint; and3. there exists a k 2 N su
h that for every ε > 0 there exists a simple polygon Qεon at most k verti
es for whi
h the symmetri
 di�eren
e (Qε [ P) \ (Qε \ P)has area less than ε.It remains to de�ne the terms 
onne
ted and simply-
onne
ted. A set P � Rd is
onne
ted2 if for every pair p, q 2 P there is a 
urve within P that 
onne
ts p and
q. A set P � Rd is simply-
onne
ted if it is 
onne
ted and if for every simple 
losed
urve γ : [0, 1] → P the bounded region en
losed by γ (well-de�ned by Theorem 2.5)is 
ompletely 
ontained in P. For instan
e, the simple polygon with one hole depi
tedin Figure 2.2a is not simply-
onne
ted, be
ause the red 
urve around the hole en
losespoints that do not belong to the polygon. The polygon P shown in Figure 2.2b is notsimple but weakly simple; the simple polygon shown in orange provides a pretty goodapproximation that 
an be made arbitrarily 
lose (but soon would be indistinguishablefrom P).

(a) (b)

Figure 2.2: Weakly simple or not?
Exercise 2.9 Whi
h of the shapes depi
ted in Figure 2.1 are weakly simple polygons?
Exercise 2.10 Show that the 
lass of weakly simple polygons would 
hange if we de-manded a weakly simple polygon to be 
losed. Would it 
hange the de�nition if weasked for a weakly simple polygon to be open?2In general, a topologi
al spa
e is 
onne
ted if it 
annot be des
ribed as a disjoint union of open subsets.The property de�ned here is 
alled path-
onne
ted. But as for Rd both notions are equivalent, we sti
kto the more intuitive and geometri
 one.
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Chapter 2. Polygons CG 2012
Exercise 2.11 Show that in De�nition 2.8 both 
onditions regarding the 
onne
tivityare ne
essary in the following sense: If either of them is dropped then there existtwo \weakly simple" polygons that have the same boundary but di�erent interior.
2.2 Polygon TriangulationFrom a topologi
al point of view, a simple polygon is nothing but a disk and so it is a veryelementary obje
t. But geometri
ally a simple polygon 
an be|as if mo
king the labelwe atta
hed to it|a pretty 
ompli
ated shape, see Figure 2.3 for an example. Whilethere is an easy and 
ompa
t one-dimensional representation in terms of the boundary,as a sequen
e of verti
es/points, it is often desirable to work with a more stru
turedrepresentation of the whole two-dimensional shape.

Figure 2.3: A simple (?) polygon.For instan
e, it is not straightforward to 
ompute the area of a general simple polygon.In order to do so, one usually des
ribes the polygon in terms of simpler geometri
 obje
ts,for whi
h 
omputing the area is easy. Good 
andidates for su
h shapes are triangles,re
tangles, and trapezoids. Indeed, it is not hard to show that every simple polygonadmits a \ni
e" partition into triangles, whi
h we 
all a triangulation.
Definition 2.12 A triangulation of a simple polygon P is a 
olle
tion T of triangles, su
hthat(1) P =

S
T2T T ;(2) the verti
es of all triangles in T are also verti
es of P; and(3) for every distin
t pair T, U 2 T , the interse
tion T \ U is either a 
ommonvertex, or a 
ommon edge, or empty.If we are given a triangulation of a simple polygon P it is easy to 
ompute the area of Pby simply summing up the area of all triangles from T . Triangulations are an in
rediblyuseful tool in planar geometry, and one reason for their importan
e is that every simplepolygon admits one.

Theorem 2.13 Every simple polygon has a triangulation.
8



CG 2012 2.2. Polygon Triangulation
Proof. Let P be a simple polygon on n verti
es. We prove the statement by indu
tion on
n. For n = 3 we fa
e a triangle P that is a triangulation by itself. For n > 3 
onsider thelexi
ographi
ally smallest vertex v of P, that is, among all verti
es of P with a smallest x-
oordinate the one with smallest y-
oordinate. Denote the neighbors of v (next verti
es)along ∂P by u and w. Consider the line segment uw. We distinguish two 
ases.Case 1: ex
ept for its endpoints u and w, the segment uw lies 
ompletely in PÆ.Then uw splits P into two smaller polygons, the triangle uvw and a simple polygon P 0on n− 1 verti
es (Figure 2.4a). By the indu
tive hypothesis, P 0 has a triangulation thattogether with T yields a triangulation of P.

v

u

w

(a) Case 1. v

u

w

p

(b) Case 2.
Figure 2.4: Cases in the proof of Theorem 2.13.Case 2: the segment uw does not lie 
ompletely in PÆ (Figure 2.4b). By 
hoi
e of v,the polygon P is 
ontained in the 
losed halfplane to the right of the verti
al line through

v. Therefore, as the segments uv and vw are part of a simple 
losed 
urve de�ning ∂P,every point suÆ
iently 
lose to v and between the rays vu and vw must be in PÆ.On the other hand, sin
e uw 6� PÆ, there is some point from ∂P in the interior ofthe triangle T = uvw (by the 
hoi
e of v the points u, v,w are not 
ollinear and so T isa triangle, indeed) or on the line segment uw. In parti
ular, as ∂P is 
omposed of linesegments, there is a vertex of P in T Æ or on uw (otherwise, a line segment would haveto interse
t the line segment uw twi
e, whi
h is impossible). Let p denote a leftmostsu
h vertex. Then the open line segment vp is 
ontained in T Æ and, thus, it splits P intotwo polygons P1 and P2 on less than n verti
es ea
h (in one of them, u does not appearas a vertex, whereas w does not appear as a vertex in the other). By the indu
tivehypothesis, both P1 and P2 have triangulations and their union yields a triangulation of
P. �The 
on�guration from Case 1 above is 
alled an ear : Three 
onse
utive verti
es u, v,wof a simple polygon P su
h that the relative interior of uw lies in PÆ. In fa
t, we 
ouldhave skipped the analysis for Case 2 by referring to the following theorem.
Theorem 2.14 (Meisters [8, 9]) Every simple polygon that is not a triangle has two non-overlapping ears, that is, two ears A and B su
h that AÆ \ BÆ = ;.
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Chapter 2. Polygons CG 2012But knowing Theorem 2.13 we 
an obtain Theorem 2.14 as a dire
t 
onsequen
e of thefollowing
Theorem 2.15 Every triangulation of a simple polygon on n � 4 verti
es 
ontains atleast two (triangles that are) ears.
Exercise 2.16 Prove Theorem 2.15.
Exercise 2.17 Let P be a simple polygon with verti
es v1, v2, . . . , vn (in 
ounter
lo
kwiseorder), where vi has 
oordinates (xi, yi). Show that the area of P is

1

2

n∑

i=1

xi+1yi − xiyi+1,where (xn+1, yn+1) = (x1, y1).The number of edges and triangles in a triangulation of a simple polygon are 
ompletelydetermined by the number of verti
es, as the following simple lemma shows.
Lemma 2.18 Every triangulation of a simple polygon on n � 3 verti
es 
onsists of
n− 2 triangles and 2n− 3 edges.
Proof. Proof by indu
tion on n. The statement is true for n = 3. For n > 3 
onsidera simple polygon P on n verti
es and an arbitrary triangulation T of P. Any edge uv in
T that is not an edge of P (and there must be su
h an edge be
ause P is not a triangle)partitions P into two polygons P1 and P2 with n1 and n2 verti
es, respe
tively. Sin
e
n1, n2 < n we 
on
lude by the indu
tive hypothesis that T partitions P1 into n1 − 2triangles and P2 into n2 − 2 triangles, using 2n1 − 3 and 2n2 − 3 edges, respe
tively.All verti
es of P appear in exa
tly one of P1 or P2, ex
ept for u and v, whi
h appear inboth. Therefore n1+n2 = n+2 and so the number of triangles in T is (n1−2)+(n2−2) =

(n1 + n2) − 4 = n + 2 − 4 = n − 2. Similarly, all edges of T appear in exa
tly one of P1or P2, ex
ept for the edge uv, whi
h appears in both. Therefore the number of edges in
T is (2n1 − 3) + (2n2 − 3) − 1 = 2(n1 + n2) − 7 = 2(n+ 2) − 7 = 2n− 3. �The universal presen
e of triangulations is something parti
ular about the plane: Thenatural generalization of Theorem 2.13 to dimension three and higher does not hold.What is this generalization, anyway?A simple polygon is a planar obje
t that is a topologi
al disk that is lo
ally boundedby pat
hes of lines. The 
orresponding term in R3 is a polyhedron, and although we willnot formally de�ne it here yet, a literal translation of the previous senten
e yields anobje
t that topologi
ally is a ball and is lo
ally bounded by pat
hes of planes. A trianglein R2 
orresponds to a tetrahedron in R3 and a tetrahedralization is a ni
e partition intotetrahedra, where \ni
e" means that the union of the tetrahedra 
overs the obje
t, theverti
es of the tetrahedra are verti
es of the polyhedron, and any two distin
t tetrahedra

10



CG 2012 2.2. Polygon Triangulationinterse
t in either a 
ommon triangular fa
e, or a 
ommon edge, or a 
ommon vertex, ornot at all.3Unfortunately, there are polyhedra in R3 that do not admit a tetrahedralization. Thefollowing 
onstru
tion is due to S
h�onhardt [11℄. It is based on a triangular prism, thatis, two 
ongruent triangles pla
ed in parallel planes where the 
orresponding sides of bothtriangles are 
onne
ted by a re
tangle (Figure 2.5a). Then one triangle is twisted/rotatedslightly within its plane. As a 
onsequen
e, the re
tangular fa
es are not plane anymore,but they obtain an inward dent along their diagonal in dire
tion of the rotation (Fig-ure 2.5b). The other (former) diagonals of the re
tangular fa
es|labeled ab 0, bc 0, and

(a)

a

b

c

a
′ c

′

b
′

(b)

Figure 2.5: The S
h�onhardt polyhedron 
annot be subdivided into tetrahedra withoutadding new verti
es.
ca 0 in Figure 2.5b|are now epigonals, that is, they lie in the exterior of the polyhe-dron. Sin
e these epigonals are the only edges between verti
es that are not part ofthe polyhedron, there is no way to add edges to form a tetrahedron for a subdivision.Clearly the polyhedron is not a tetrahedron by itself, and so we 
on
lude that it doesnot admit a subdivision into tetrahedra without adding new verti
es. If adding newverti
es|so-
alled Steiner verti
es|is allowed, then there is no problem to 
onstru
t atetrahedralization, and this holds true in general.Finally, let us have a brief look at the algorithmi
 
onsequen
es of Theorem 2.13.Knowing that a triangulation exists is ni
e, but it is mu
h better to know that it 
analso be 
onstru
ted eÆ
iently.
Exercise 2.19 Convert Theorem 2.13 into an O(n2) time algorithm to 
onstru
t atriangulation for a given simple polygon on n verti
es.The runtime a
hieved by the straightforward appli
ation of Theorem 2.13 is not optimal.We will revisit this question at several times during this 
ourse and dis
uss improvedalgorithms for the problem of triangulating a simple polygon.3These \ni
e" subdivisions 
an be de�ned in an abstra
t 
ombinatorial setting, where they are 
alledsimpli
ial 
ompli
es.

11



Chapter 2. Polygons CG 2012The best (in terms of worst-
ase runtime) algorithm known due to Chazelle [4℄ 
om-putes a triangulation in linear time. But this algorithm is very 
ompli
ated and we willnot dis
uss it here. There is also a somewhat simpler randomized algorithm to 
omputea triangulation in expe
ted linear time [2℄, whi
h we will not dis
uss in detail, either.Instead you will later see a mu
h simpler algorithm with a pretty-
lose-to linear runtimebound. The question of whether there exists a simple (whi
h is not really a well-de�nedterm, of 
ourse, ex
ept that Chazelle's Algorithm does not qualify) deterministi
 lineartime algorithm to triangulate a simple polygon remains open [6℄.It is interesting to note that the 
omplexity of the problem 
hanges to Θ(n logn), ifthe polygon may 
ontain holes [3℄. This means that there is an algorithm to 
onstru
ta triangulation for a given simple polygon with holes on a total of n verti
es (
ountingboth the verti
es on the outer boundary and those of holes) in O(n logn) time. But thereis also a lower bound of Ω(n logn) operations that holds in all models of 
omputationin whi
h there exists the 
orresponding lower bound for 
omparison-based sorting. Thisdi�eren
e in 
omplexity is a very 
ommon pattern: There are many problems that are(sometimes mu
h) harder for simple polygons with holes than for simple polygons. Somaybe the term \simple" has some justi�
ation, after all. . .
2.3 The Art Gallery Problem

g

Figure 2.6: The region thata guard g 
an observe.
In 1973 Vi
tor Klee posed the following question: \Howmany guards are ne
essary, and how many are suÆ
ient topatrol the paintings and works of art in an art gallery with
n walls?" From a geometri
 point of view, we may think ofan \art gallery with n walls" as a simple polygon boundedby n edges, that is, a simple polygon P with n verti
es.And a guard 
an be modeled as a point where we imaginethe guard to stand and observe everything that is in sight.In sight, �nally, refers to the walls of the gallery (edges ofthe polygon) that are opaque and, thus, prevent a guard tosee what is behind. In other words, a guard (point) g 
anwat
h over every point p 2 P, for whi
h the line segment gp lies 
ompletely in PÆ.It is not hard to see that bn/3
 guards are ne
essary in general.
Exercise 2.20 Des
ribe a family (Pn)n�3 of simple polygons su
h that Pn has n verti
esand at least bn/3
 guards are needed to guard it.What is more surprising: bn/3
 guards are always suÆ
ient as well. Chv�atal [5℄ was the�rst to prove that, but then Fisk [7℄ gave a mu
h simpler proof using|you may haveguessed it|triangulations. Fisk's proof was 
onsidered so beautiful that it was in
ludedinto \Proofs from THE BOOK" [1℄, a 
olle
tion inspired by Paul Erd}os' belief in \apla
e where God keeps aestheti
ally perfe
t proofs". The proof is based on the followinglemma.
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CG 2012 2.3. The Art Gallery Problem
Lemma 2.21 Every triangulation of a simple polygon is 3-
olorable. That is, ea
hvertex 
an be assigned one of three 
olors in su
h a way that adja
ent verti
esre
eive di�erent 
olors.
Proof. Indu
tion on n. For n = 3 the statement is obvious. For n > 3, by Theorem 2.15the triangulation 
ontains an ear uvw. Cutting o� the ear 
reates a triangulation of apolygon on n − 1 verti
es, whi
h by the indu
tive hypothesis admits a 3-
oloring. Nowwhi
hever two 
olors the verti
es u and w re
eive in this 
oloring, there remains a third
olor to be used for v. �

Theorem 2.22 (Fisk [7]) Every simple polygon on n verti
es 
an be guarded using atmost bn/3
 guards.
Proof. Consider a triangulation of the polygon and a 3-
oloring of the verti
es as ensuredby Lemma 2.21. Take the smallest 
olor 
lass, whi
h 
learly 
onsists of at most bn/3
verti
es, and put a guard at ea
h vertex. As every point of the polygon is 
ontained inat least one triangle and every triangle has exa
tly one vertex in the guarding set, thewhole polygon is guarded. �

Figure 2.7: A triangulation of a simple polygon on 17 verti
es and a 3-
oloring ofit. The verti
es shown solid orange form the smallest 
olor 
lass and guard thepolygon using b17/3
 = 5 guards.
Questions1. What is a simple polygon/a simple polygon with holes/a weakly simple poly-gon? Explain the de�nitions and provide some examples of members and non-members of the respe
tive 
lasses. For a given polygon you should be able to tellwhi
h of these 
lasses it belongs to or does not belong to and argue why this is the
ase.2. What is an open/
losed/bounded/
onne
ted/simply-
onne
ted set in Rd? Whatis the interior/
losure of a point set? Explain the de�nitions and provide some

13



Chapter 2. Polygons CG 2012illustrative examples. For a given set you should be able to argue whi
h of theproperties mentioned it possesses.3. What is a triangulation of a simple polygon? Does it always exist? Explainthe de�nition and provide some illustrative examples. Present the proof of Theo-rem 2.13 in detail.4. How many points are needed to guard a simple polygon? Present the proofs ofTheorem 2.15, Lemma 2.21, and Theorem 2.22 in detail.
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