
Chapter 1

Fundamentals

1.1 Models of Computation

Real RAM Model. A memory ell stores a real number. Any single arithmeti operationor omparison an be omputed in onstant time. In addition, sometimes also roots,logarithms, other analyti funtions, indiret addressing (integral), or oor and eilingare used.This is a quite powerful (and somewhat unrealisti) model of omputation, as a singlereal number in priniple an enode an arbitrary amount of information. Therefore wehave to ensure that we do not abuse the power of this model.
Algebraic Computation Trees (Ben-Or [1]). A omputation is regarded as a binary tree.

≤ 0

a − b

b − ca − c

≤ 0 ≤ 0

a c b c

� The leaves ontain the (possible) results of the ompu-tation.� Every node v with one hild has an operation of theform +,−, �, /,p, . . . assoiated to it. The operands ofthis operation are onstant input values, or among theanestors of v in the tree.� Every node v with two hildren has assoiated to it abranhing of the form > 0, � 0, or = 0. The branhis with respet to the result of v's parent node. If theexpression yields true, the omputation ontinues withthe left hild of v; otherwise, it ontinues with the righthild of v.If every branh is based on a linear funtion in the input values, we fae a linearomputation tree. Analogously one an de�ne, say, quadrati omputation trees. Theterm deision tree is used if all of the results are either true or false.
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Chapter 1. Fundamentals CG 2012The omplexity of a omputation or deision tree is the maximum number of vertiesalong any root-to-leaf path. It is well known that Ω(n logn) omparisons are requiredto sort n numbers. But also for some problems that appear easier than sorting at �rstglane, the same lower bound holds. Consider, for instane, the following problem.Element Uniqueness
Input: {x1, . . . , xn} � R, n 2 N.
Output: Is xi = xj, for some i, j 2 {1, . . . , n} with i 6= j?Ben-Or [1℄ has shown that any algebrai deision tree to solve Element Uniquenessfor n elements has omplexity Ω(n logn).
1.2 Basic Geometric ObjectsWe will mostly be onerned with the d-dimensional Eulidean spae Rd, for small d 2 N;typially, d = 2 or d = 3. The basi objets of interest in Rd are the following.
Points. A point p, typially desribed by its d Cartesianoordinates p = (x1, . . . , xd). p = (−4, 0)

q = (2,−2)

r = (7, 1)

Directions. A vetor v 2 Sd−1 (the (d − 1)-dimensionalunit sphere), typially desribed by its d Cartesian oor-dinates v = (x1, . . . , xd), with ||v|| =
q∑d

i=1 xi
2 = 1.

Lines. A line is a one-dimensional aÆne subspae. It anbe desribed by two distint points p and q as the set ofall points r that satisfy r = p+ λ(q− p), for some λ 2 R. p

qWhile any pair of distint points de�nes a unique line, a line in R2 ontains in�nitelymany points and so it may happen that a olletion of three or more points lie on a line.Suh a olletion of points is termed ollinear 1.
Rays. If we remove a single point from a line and takethe losure of one of the onneted omponents, then weobtain a ray. It an be desribed by two distint points pand q as the set of all points r that satisfy r = p+λ(q−p),for some λ � 0. The orientation of a ray is the diretion
(q− p)/kq− pk. p

q1Not olinear, whih refers to a notion in the theory of oalgebras.
2



CG 2012 1.2. Basi Geometri Objets
Line segment. A line segment is the intersetion of twoollinear rays of opposite orientation. It an be desribedby two points p and q as the set of all points r that satisfy
r = p + λ(q − p), for some λ 2 [0, 1]. We will denotethe line segment through p and q by pq. Dependingon the ontext we may allow or disallow degenerate linesegments onsisting of a single point only (p = q in theabove equation). p

q

Hyperplanes. A hyperplaneH is a (d−1)-dimensional aÆne subspae. It an be desribedalgebraially by d+ 1 oeÆients λ1, . . . , λd+1 2 R, where k(λ1, . . . , λd+1)k = 1, as the setof all points (x1, . . . , xd) that satisfy the linear equation H :
∑d

i=1 λixi = λd+1.If the above equation is onverted into an inequality, we obtain the algebrai desrip-tion of a halfspae (in R2: halfplane).
Spheres. A sphere is the set of all points that are equidistant to a �xed point. It an bedesribed by a point c (enter) and a number ρ 2 R (radius) as the set of all points pthat satisfy ||p − c|| � ρ.
References[1℄ Mihael Ben-Or, Lower bounds for algebrai omputation trees. In Pro.15th Annu. ACM Sympos. Theory Comput., pp. 80{86, 1983, URL

http://dx.doi.org/10.1145/800061.808735.
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Chapter 2

PolygonsAlthough we an think of a line ℓ � R2 as an in�nite point set that onsists of all pointsin R2 that are on ℓ, there still exists a �nite desription for ℓ. Suh a desription is,for instane, provided by the three oeÆients a, b, c 2 R of an equation of the form
ax + by = c, with (a, b) 6= (0, 0). Atually this holds true for all of the fundamentalgeometri objets that were mentioned in the previous setion: Eah of them has onstantdesription omplexity (or, informally, just size), that is, it an be desribed by aonstant1 number of parameters.In this ourse we will typially deal with objets that are not of onstant size. Oftenthese are formed by merely aggregating onstant-size objets, for instane, points toform a �nite set of points. But sometimes we also demand additional struture thatgoes beyond aggregation only. Probably the most fundamental geometri objets of thistype are what we all polygons. You probably learned this term in shool, but whatis a polygon preisely? Consider the examples shown in Figure 2.1. Are all of thesepolygons? If not, where would you draw the line?

(a) (b) (c) (d) (e) (f)

Figure 2.1: What is a polygon?
2.1 Classes of PolygonsObviously, there is not the right answer to suh a question and ertainly there aredi�erent types of polygons. Often the term polygon is used somewhat sloppily in plae1Unless spei�ed di�erently, we will always assume that the dimension is (a small) onstant. In ahigh-dimensional spae Rd, one has to aount for a desription omplexity of Θ(d).
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CG 2012 2.1. Classes of Polygonsof what we all a simple polygon, de�ned below.
Definition 2.1 A simple polygon is a ompat region P � R2 that is bounded by a simplelosed urve γ : [0, 1] → R2 that onsists of a �nite number of line segments. A
curve is a ontinuous map γ : [0, 1] → R2. A urve γ is closed, if γ(0) = γ(1) and itis simple if it is injetive on [0, 1), that is, the urve does not interset itself.Out of the examples shown above only Polygon 2.1a is simple. For eah of the remainingpolygons it is impossible to ombine the bounding segments into a simple losed urve.The term ompat for subsets of Rd means bounded and losed. A subset of P � Rdis bounded, if it is ontained in the ball of radius r around the origin, for some �nite
r > 0. Being losed means that the boundary is onsidered to be part of the polygon.In order to formally de�ne these terms, let us briey review a few basi notions fromtopology.The standard topology of Rd is de�ned in terms of the Eulidean metri. A point
p 2 Rd is interior to a set P � Rd, if there exists an ε-ball Bε(p) = {x 2 Rd : ||x−p|| < ε}around p, for some ε > 0, that is ompletely ontained in P. A set is open, if all of itspoints are interior; and it is losed, if its omplement is open.
Exercise 2.2 Determine for eah of the following sets whether they are open or losedin R2. a) B1(0) b) {(1, 0)} ) R2 d) R2\Z2 e) R2\Q2 f) {(x, y) : x 2 R, y � 0}

Exercise 2.3 Show that the union of ountably many open sets in Rd is open. Showthat the union of a �nite number of losed sets in Rd is losed. (These are two ofthe axioms that de�ne a topology. So the statements are needed to assert that themetri topology is a topology, indeed.) What follows for intersetions of open andlosed sets? Finally, show that the union of ountably many losed sets in Rd isnot neessarily losed.The boundary ∂P of a set P � Rd onsists of all points that are neither interior to Pnor to its omplement Rd \ P. By de�nition, for every p 2 ∂P every ball Bε(p) ontainsboth points from P and from Rd \P. Sometimes one wants to onsider a set P � Rd openalthough it is not. In that ase one an resort to the interior PÆ of P that is formed bythe subset of points interior to P. Similarly, the losure P of P is de�ned by P = P [ ∂P.Lower-dimensional objets, suh as line segments in R2 or triangles in R3, do notpossess any interior point (beause the ε-balls needed around any suh point are full-dimensional). Whenever we want to talk about the interior of a lower-dimensional objet,we use the quali�er relative and onsider it relative to the smallest aÆne subspae thatontains the objet.For instane, the smallest aÆne subspae that ontains a line segment is a line andso the relative interior of a line segment in R2 onsists of all points exept the endpoints,just like for an interval in R1. Similarly, for a triangle in R3 the smallest aÆne subspaethat ontains it is a plane. Hene its relative interior is just the interior of the triangle,onsidered as a two-dimensional objet.
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Chapter 2. Polygons CG 2012
Exercise 2.4 Show that for any P � Rd the interior PÆ is open. (Why is there some-thing to show to begin with?) Show that for any P � Rd the losure P is losed.When desribing a simple polygon P it is suÆient to desribe only its boundary
∂P. As ∂P by de�nition is a simple losed urve γ that onsists of �nitely many linesegments, we an eÆiently desribe it as a sequene p1, . . . , pn of points, suh that γ isformed by the line segments p1p2, p2p3, . . . , pn−1pn, pnp1. These points are referred to asthe verties of the polygon, and the segments onneting them are referred as the edgesof the polygon.Knowing the boundary, it is easy to tell apart the (bounded) interior from the (un-bounded) exterior. This is asserted even for muh more general urves by the well-knownJordan-Curve Theorem.
Theorem 2.5 (Jordan 1887) Any simple losed urve γ : [0, 1] → R2 divides the planeinto exatly two onneted omponents whose ommon boundary is formed by γ.In full generality, the proof of the deeptively obvious laim is surprisingly diÆult. Wewill not prove it here, the interested reader an �nd a proof, for instane, in the bookof Mohar and Thomassen [10℄. There exist di�erent generalizations of the theorem andthere also has been some debate about to whih degree the original proof of Jordan isatually orret. For simple polygons the situation is easier, though. The essential ideaan be worked out algorithmially, whih we leave as an exerise.
Exercise 2.6 Desribe an algorithm to deide whether a point lies inside or outsideof a simple polygon. More preisely, given a simple polygon P � R2 as a list of itsverties (v1, v2, . . . , vn) in ounterlokwise order and a query point q 2 R2, deidewhether q is inside P, on the boundary of P, or outside. The runtime of youralgorithm should be O(n).There are good reasons to ask for the boundary of a polygon to form a simple urve:For instane, in the example depited in Figure 2.1b there are several regions for whih itis ompletely unlear whether they should belong to the interior or to the exterior of thepolygon. A similar problem arises for the interior regions in Figure 2.1f. But there aremore general lasses of polygons that some of the remaining examples fall into. We willdisuss two suh lasses here. The �rst omprises polygons like the one from Figure 2.1d.
Definition 2.7 A region P � R2 is a simple polygon with holes if it an be desribed as
P = F \

S
H2HHÆ, where H is a �nite olletion of pairwise disjoint simple polygons(alled holes) and F is a simple polygon for whih FÆ � SH2HH.The way this de�nition heavily depends on the notion of simple polygons makes itstraightforward to derive a similar trihotomy as the Jordan Curve Theorem providesfor simple polygons, that is, every point in the plane is either inside, or on the boundary,or outside of P (exatly one of these three).
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CG 2012 2.1. Classes of PolygonsThe seond lass desribes polygons that are \almost-simple" in the sense that theyare arbitrarily lose to a simple polygon. In many algorithmi senarios suh polygonsan be treated very similarly to simple polygons.
Definition 2.8 A weakly simple polygon is a bounded region P � R2 suh that1. P is onneted and P is simply-onneted;2. ∂P onsists of a �nite number of line segments, no two of whih intersetexept at a ommon endpoint; and3. there exists a k 2 N suh that for every ε > 0 there exists a simple polygon Qεon at most k verties for whih the symmetri di�erene (Qε [ P) \ (Qε \ P)has area less than ε.It remains to de�ne the terms onneted and simply-onneted. A set P � Rd isonneted2 if for every pair p, q 2 P there is a urve within P that onnets p and
q. A set P � Rd is simply-onneted if it is onneted and if for every simple losedurve γ : [0, 1] → P the bounded region enlosed by γ (well-de�ned by Theorem 2.5)is ompletely ontained in P. For instane, the simple polygon with one hole depitedin Figure 2.2a is not simply-onneted, beause the red urve around the hole enlosespoints that do not belong to the polygon. The polygon P shown in Figure 2.2b is notsimple but weakly simple; the simple polygon shown in orange provides a pretty goodapproximation that an be made arbitrarily lose (but soon would be indistinguishablefrom P).

(a) (b)

Figure 2.2: Weakly simple or not?
Exercise 2.9 Whih of the shapes depited in Figure 2.1 are weakly simple polygons?
Exercise 2.10 Show that the lass of weakly simple polygons would hange if we de-manded a weakly simple polygon to be losed. Would it hange the de�nition if weasked for a weakly simple polygon to be open?2In general, a topologial spae is onneted if it annot be desribed as a disjoint union of open subsets.The property de�ned here is alled path-onneted. But as for Rd both notions are equivalent, we stikto the more intuitive and geometri one.
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Chapter 2. Polygons CG 2012
Exercise 2.11 Show that in De�nition 2.8 both onditions regarding the onnetivityare neessary in the following sense: If either of them is dropped then there existtwo \weakly simple" polygons that have the same boundary but di�erent interior.
2.2 Polygon TriangulationFrom a topologial point of view, a simple polygon is nothing but a disk and so it is a veryelementary objet. But geometrially a simple polygon an be|as if moking the labelwe attahed to it|a pretty ompliated shape, see Figure 2.3 for an example. Whilethere is an easy and ompat one-dimensional representation in terms of the boundary,as a sequene of verties/points, it is often desirable to work with a more struturedrepresentation of the whole two-dimensional shape.

Figure 2.3: A simple (?) polygon.For instane, it is not straightforward to ompute the area of a general simple polygon.In order to do so, one usually desribes the polygon in terms of simpler geometri objets,for whih omputing the area is easy. Good andidates for suh shapes are triangles,retangles, and trapezoids. Indeed, it is not hard to show that every simple polygonadmits a \nie" partition into triangles, whih we all a triangulation.
Definition 2.12 A triangulation of a simple polygon P is a olletion T of triangles, suhthat(1) P =

S
T2T T ;(2) the verties of all triangles in T are also verties of P; and(3) for every distint pair T, U 2 T , the intersetion T \ U is either a ommonvertex, or a ommon edge, or empty.If we are given a triangulation of a simple polygon P it is easy to ompute the area of Pby simply summing up the area of all triangles from T . Triangulations are an inrediblyuseful tool in planar geometry, and one reason for their importane is that every simplepolygon admits one.

Theorem 2.13 Every simple polygon has a triangulation.
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CG 2012 2.2. Polygon Triangulation
Proof. Let P be a simple polygon on n verties. We prove the statement by indution on
n. For n = 3 we fae a triangle P that is a triangulation by itself. For n > 3 onsider thelexiographially smallest vertex v of P, that is, among all verties of P with a smallest x-oordinate the one with smallest y-oordinate. Denote the neighbors of v (next verties)along ∂P by u and w. Consider the line segment uw. We distinguish two ases.Case 1: exept for its endpoints u and w, the segment uw lies ompletely in PÆ.Then uw splits P into two smaller polygons, the triangle uvw and a simple polygon P 0on n− 1 verties (Figure 2.4a). By the indutive hypothesis, P 0 has a triangulation thattogether with T yields a triangulation of P.

v

u

w

(a) Case 1. v

u

w

p

(b) Case 2.
Figure 2.4: Cases in the proof of Theorem 2.13.Case 2: the segment uw does not lie ompletely in PÆ (Figure 2.4b). By hoie of v,the polygon P is ontained in the losed halfplane to the right of the vertial line through

v. Therefore, as the segments uv and vw are part of a simple losed urve de�ning ∂P,every point suÆiently lose to v and between the rays vu and vw must be in PÆ.On the other hand, sine uw 6� PÆ, there is some point from ∂P in the interior ofthe triangle T = uvw (by the hoie of v the points u, v,w are not ollinear and so T isa triangle, indeed) or on the line segment uw. In partiular, as ∂P is omposed of linesegments, there is a vertex of P in T Æ or on uw (otherwise, a line segment would haveto interset the line segment uw twie, whih is impossible). Let p denote a leftmostsuh vertex. Then the open line segment vp is ontained in T Æ and, thus, it splits P intotwo polygons P1 and P2 on less than n verties eah (in one of them, u does not appearas a vertex, whereas w does not appear as a vertex in the other). By the indutivehypothesis, both P1 and P2 have triangulations and their union yields a triangulation of
P. �The on�guration from Case 1 above is alled an ear : Three onseutive verties u, v,wof a simple polygon P suh that the relative interior of uw lies in PÆ. In fat, we ouldhave skipped the analysis for Case 2 by referring to the following theorem.
Theorem 2.14 (Meisters [8, 9]) Every simple polygon that is not a triangle has two non-overlapping ears, that is, two ears A and B suh that AÆ \ BÆ = ;.
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Chapter 2. Polygons CG 2012But knowing Theorem 2.13 we an obtain Theorem 2.14 as a diret onsequene of thefollowing
Theorem 2.15 Every triangulation of a simple polygon on n � 4 verties ontains atleast two (triangles that are) ears.
Exercise 2.16 Prove Theorem 2.15.
Exercise 2.17 Let P be a simple polygon with verties v1, v2, . . . , vn (in ounterlokwiseorder), where vi has oordinates (xi, yi). Show that the area of P is

1

2

n∑

i=1

xi+1yi − xiyi+1,where (xn+1, yn+1) = (x1, y1).The number of edges and triangles in a triangulation of a simple polygon are ompletelydetermined by the number of verties, as the following simple lemma shows.
Lemma 2.18 Every triangulation of a simple polygon on n � 3 verties onsists of
n− 2 triangles and 2n− 3 edges.
Proof. Proof by indution on n. The statement is true for n = 3. For n > 3 onsidera simple polygon P on n verties and an arbitrary triangulation T of P. Any edge uv in
T that is not an edge of P (and there must be suh an edge beause P is not a triangle)partitions P into two polygons P1 and P2 with n1 and n2 verties, respetively. Sine
n1, n2 < n we onlude by the indutive hypothesis that T partitions P1 into n1 − 2triangles and P2 into n2 − 2 triangles, using 2n1 − 3 and 2n2 − 3 edges, respetively.All verties of P appear in exatly one of P1 or P2, exept for u and v, whih appear inboth. Therefore n1+n2 = n+2 and so the number of triangles in T is (n1−2)+(n2−2) =

(n1 + n2) − 4 = n + 2 − 4 = n − 2. Similarly, all edges of T appear in exatly one of P1or P2, exept for the edge uv, whih appears in both. Therefore the number of edges in
T is (2n1 − 3) + (2n2 − 3) − 1 = 2(n1 + n2) − 7 = 2(n+ 2) − 7 = 2n− 3. �The universal presene of triangulations is something partiular about the plane: Thenatural generalization of Theorem 2.13 to dimension three and higher does not hold.What is this generalization, anyway?A simple polygon is a planar objet that is a topologial disk that is loally boundedby pathes of lines. The orresponding term in R3 is a polyhedron, and although we willnot formally de�ne it here yet, a literal translation of the previous sentene yields anobjet that topologially is a ball and is loally bounded by pathes of planes. A trianglein R2 orresponds to a tetrahedron in R3 and a tetrahedralization is a nie partition intotetrahedra, where \nie" means that the union of the tetrahedra overs the objet, theverties of the tetrahedra are verties of the polyhedron, and any two distint tetrahedra
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CG 2012 2.2. Polygon Triangulationinterset in either a ommon triangular fae, or a ommon edge, or a ommon vertex, ornot at all.3Unfortunately, there are polyhedra in R3 that do not admit a tetrahedralization. Thefollowing onstrution is due to Sh�onhardt [11℄. It is based on a triangular prism, thatis, two ongruent triangles plaed in parallel planes where the orresponding sides of bothtriangles are onneted by a retangle (Figure 2.5a). Then one triangle is twisted/rotatedslightly within its plane. As a onsequene, the retangular faes are not plane anymore,but they obtain an inward dent along their diagonal in diretion of the rotation (Fig-ure 2.5b). The other (former) diagonals of the retangular faes|labeled ab 0, bc 0, and

(a)

a

b

c

a
′ c

′

b
′

(b)

Figure 2.5: The Sh�onhardt polyhedron annot be subdivided into tetrahedra withoutadding new verties.
ca 0 in Figure 2.5b|are now epigonals, that is, they lie in the exterior of the polyhe-dron. Sine these epigonals are the only edges between verties that are not part ofthe polyhedron, there is no way to add edges to form a tetrahedron for a subdivision.Clearly the polyhedron is not a tetrahedron by itself, and so we onlude that it doesnot admit a subdivision into tetrahedra without adding new verties. If adding newverties|so-alled Steiner verties|is allowed, then there is no problem to onstrut atetrahedralization, and this holds true in general.Finally, let us have a brief look at the algorithmi onsequenes of Theorem 2.13.Knowing that a triangulation exists is nie, but it is muh better to know that it analso be onstruted eÆiently.
Exercise 2.19 Convert Theorem 2.13 into an O(n2) time algorithm to onstrut atriangulation for a given simple polygon on n verties.The runtime ahieved by the straightforward appliation of Theorem 2.13 is not optimal.We will revisit this question at several times during this ourse and disuss improvedalgorithms for the problem of triangulating a simple polygon.3These \nie" subdivisions an be de�ned in an abstrat ombinatorial setting, where they are alledsimpliial omplies.
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Chapter 2. Polygons CG 2012The best (in terms of worst-ase runtime) algorithm known due to Chazelle [4℄ om-putes a triangulation in linear time. But this algorithm is very ompliated and we willnot disuss it here. There is also a somewhat simpler randomized algorithm to omputea triangulation in expeted linear time [2℄, whih we will not disuss in detail, either.Instead you will later see a muh simpler algorithm with a pretty-lose-to linear runtimebound. The question of whether there exists a simple (whih is not really a well-de�nedterm, of ourse, exept that Chazelle's Algorithm does not qualify) deterministi lineartime algorithm to triangulate a simple polygon remains open [6℄.It is interesting to note that the omplexity of the problem hanges to Θ(n logn), ifthe polygon may ontain holes [3℄. This means that there is an algorithm to onstruta triangulation for a given simple polygon with holes on a total of n verties (ountingboth the verties on the outer boundary and those of holes) in O(n logn) time. But thereis also a lower bound of Ω(n logn) operations that holds in all models of omputationin whih there exists the orresponding lower bound for omparison-based sorting. Thisdi�erene in omplexity is a very ommon pattern: There are many problems that are(sometimes muh) harder for simple polygons with holes than for simple polygons. Somaybe the term \simple" has some justi�ation, after all. . .
2.3 The Art Gallery Problem

g

Figure 2.6: The region thata guard g an observe.
In 1973 Vitor Klee posed the following question: \Howmany guards are neessary, and how many are suÆient topatrol the paintings and works of art in an art gallery with
n walls?" From a geometri point of view, we may think ofan \art gallery with n walls" as a simple polygon boundedby n edges, that is, a simple polygon P with n verties.And a guard an be modeled as a point where we imaginethe guard to stand and observe everything that is in sight.In sight, �nally, refers to the walls of the gallery (edges ofthe polygon) that are opaque and, thus, prevent a guard tosee what is behind. In other words, a guard (point) g anwath over every point p 2 P, for whih the line segment gp lies ompletely in PÆ.It is not hard to see that bn/3 guards are neessary in general.
Exercise 2.20 Desribe a family (Pn)n�3 of simple polygons suh that Pn has n vertiesand at least bn/3 guards are needed to guard it.What is more surprising: bn/3 guards are always suÆient as well. Chv�atal [5℄ was the�rst to prove that, but then Fisk [7℄ gave a muh simpler proof using|you may haveguessed it|triangulations. Fisk's proof was onsidered so beautiful that it was inludedinto \Proofs from THE BOOK" [1℄, a olletion inspired by Paul Erd}os' belief in \aplae where God keeps aesthetially perfet proofs". The proof is based on the followinglemma.
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CG 2012 2.3. The Art Gallery Problem
Lemma 2.21 Every triangulation of a simple polygon is 3-olorable. That is, eahvertex an be assigned one of three olors in suh a way that adjaent vertiesreeive di�erent olors.
Proof. Indution on n. For n = 3 the statement is obvious. For n > 3, by Theorem 2.15the triangulation ontains an ear uvw. Cutting o� the ear reates a triangulation of apolygon on n − 1 verties, whih by the indutive hypothesis admits a 3-oloring. Nowwhihever two olors the verties u and w reeive in this oloring, there remains a thirdolor to be used for v. �

Theorem 2.22 (Fisk [7]) Every simple polygon on n verties an be guarded using atmost bn/3 guards.
Proof. Consider a triangulation of the polygon and a 3-oloring of the verties as ensuredby Lemma 2.21. Take the smallest olor lass, whih learly onsists of at most bn/3verties, and put a guard at eah vertex. As every point of the polygon is ontained inat least one triangle and every triangle has exatly one vertex in the guarding set, thewhole polygon is guarded. �

Figure 2.7: A triangulation of a simple polygon on 17 verties and a 3-oloring ofit. The verties shown solid orange form the smallest olor lass and guard thepolygon using b17/3 = 5 guards.
Questions1. What is a simple polygon/a simple polygon with holes/a weakly simple poly-gon? Explain the de�nitions and provide some examples of members and non-members of the respetive lasses. For a given polygon you should be able to tellwhih of these lasses it belongs to or does not belong to and argue why this is thease.2. What is an open/losed/bounded/onneted/simply-onneted set in Rd? Whatis the interior/losure of a point set? Explain the de�nitions and provide some
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Chapter 2. Polygons CG 2012illustrative examples. For a given set you should be able to argue whih of theproperties mentioned it possesses.3. What is a triangulation of a simple polygon? Does it always exist? Explainthe de�nition and provide some illustrative examples. Present the proof of Theo-rem 2.13 in detail.4. How many points are needed to guard a simple polygon? Present the proofs ofTheorem 2.15, Lemma 2.21, and Theorem 2.22 in detail.
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